238 Chemistry Letters 2001

The Air Luminescence Count for the Rapid Determination of ²²²Rn in a Liquid Scintillation Spectrometer

Yuko Morita-Murase, Isao Murakami, and Yoshio Homma

Laboratory for Radiopharmaceutical Chemistry, Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512

(Received December 5, 2000; CL-001096)

A liquid scintillation spectrometer has been applied to the determination of the counting efficiency for the air luminescence produced by standardized ²²²Rn and its daughters. Based on the counting efficiency, known amounts of ²²²Rn can be prepared in 3.5 h. Moreover, the ²²⁶Ra source from which ²²²Rn is collected does not necessary have to be a standard one. In contrast, the conventional method for preparing known amounts of ²²²Rn usually requires a long waiting period (ca. 15–30 days).

The passage of α -particles in air results in the ionization and excitation of nitrogen. Several α -emitters in air was determined by measuring the luminescence from excited nitrogen with a liquid scintillation spectrometer. However, the counting efficiency for ^{222}Rn and its daughters (^{218}Po , ^{214}Pb , ^{214}Bi , and ^{214}Po) was determined with a specially modified liquid scintillation spectrometer which could not be universally utilized. In the present study, therefore, ^{222}Rn and its daughters were standardized by measuring γ -rays from ^{214}Pb with a well Ge detector, and transferred into air in the counting vial. Then, counting efficiency for the air luminescence was determined with a commercially available liquid scintillation spectrometer giving much attention to Cherenkov counting efficiency due to β -particles from ^{214}Pb and ^{214}Bi and the counting efficiency for the short-lived daughters, some of which are supposed to be attached to wall of the counting vial.

Until now, ²²²Rn collected from a standard ²²⁶Ra source was determined based on the secular equilibrium between 226Ra and ²²²Rn. However, the determination using the standard ²²⁶Ra source requires a long waiting period (ca.15-30 days) to grow ²²²Rn from the ²²⁶Ra source. In addition, it is necessary to confirm that all of ²²²Rn from the ²²⁶Ra source is removed. A significant advantage of the proposed method is that the time required for the preparation of known amounts of ²²²Rn is only 3.5 h. In addition, it must be emphasized that the ²²⁶Ra source from which ²²²Rn is collected, does not necessary have to be standardized one. This is because we do not determine 222Rn based on the secular equilibrium between ²²⁶Ra and ²²²Rn, but need only standardize the ²²²Rn that is actually transferred and stored in the counting vial by measuring the air luminescence count. Therefore, we need not confirm that all of the ²²²Rn from the ²²⁶Ra source was removed. Exactly the luminescence in this study should be termed "nitrogen luminescence". However, "air luminescence" was employed in conformity with the expression used in the preceding papers.^{2,3}

Standardization of 222 Rn sample was carried out as follows: 222 Rn was collected from the air space above 226 RaCl₂ solution with a syringe and added to a quartz pipe of 7-mm internal diameter and 40-mm long, both ends of which were closed silicon rubber stoppers. 222 Rn in the pipe was allowed to remain for 3.5 h before measurements. During the time, the 218 Po, 214 Pb, 214 Bi and 214 Po came to transient equilibrium with 222 Rn. Then the activity of 222 Rn was determined through its daughter 214 Pb: 214 Porays from

²¹⁴Pb were measured with a Ge well detector, Model GCW1521 (Canberra Industries Inc., CT, USA). This system had a 1.9-keV resolution (FWHM) at 1.33 MeV and relative efficiency of 17.1%. The detector was absolutely calibrated using a set of DAMRI/LMRI γ-ray standard sources (Saclay, France).

The energy and abundance of γ -ray from ^{214}Pb used for the determination were 0.3519 MeV⁵ and 36.74%,⁵ respectively. The full energy peak efficiency for 0.3519 MeV γ -ray was 25.4 \pm 0.4%.

The full energy peaks were counted to a minimum of 1800 counts to limit the statistical error to less than ca. 2.4%. The background was observed to be constant within statistical error. The dead time losses were always less than 1%. No peaks which seem to be due to sum effects were observed. Thus ²²²Rn in the quartz pipe was standardized based on the ²¹⁴Pb-activity.

Then, the quartz pipe was put in the liquid scintillation counting vial and after sealing with a silicon rubber stopper, the counting vial was shaken until the quartz pipe in the vial was broken. The sample that contains the equilibrium mixture of $^{222}\rm{Rn}$ and its daughters is hereinafter referred to as "standard $^{222}\rm{Rn}$ sample". Table 1 lists nine standard $^{222}\rm{Rn}$ samples of a wide variety of $^{222}\rm{Rn}$ concentrations prepared in the similar manner described above. Unfortunately, γ -ray spectrometry is not suitable for routine measurements of low-level $^{222}\rm{Rn}$ in the environment, because they generally require long counting time.

Table 1. The E_{α} for the standard ²²²Rn samples

Activity of the	The air	
standard ²²² Rn sample ^a	luminescence	
sample"	count rate	The E_{lpha}
/ Bq	/ cps	/ %
656.25 ± 2.15	1396.75 ± 1.53	42.57 ± 0.15
527.40 ± 1.67	1152.78 ± 1.39	43.72 ± 0.15
189.22 ± 0.64	391.75 ± 0.81	41.41 ± 0.16
133.06 ± 0.54	282.22 ± 0.69	42.42 ± 0.20
69.22 ± 0.34	149.99 ± 0.50	43.40 ± 0.26
30.49 ± 0.16	65.49 ± 0.33	42.96 ± 0.32
10.25 ± 0.10	22.12 ± 0.20	43.15 ± 0.57
6.57 ± 0.09	13.75 ± 0.11	41.88 ± 0.67
2.96 ± 0.07	6.23 ± 0.08	41.92 ± 1.14
	av	42.6 ± 0.2

^a Based on the activity of ²¹⁴Pb.

Upon completion of γ -ray measurements, the air luminescence counts of the standard ^{222}Rn samples were measured with an Aloka liquid scintillation spectrometer, Model LSC-3500 (Aloka Co. Ltd. Tokyo, Japan) for 30 min. Background counts were measured under identical conditions using a counting vial which was full of air. The counting efficiency of the standard ^{222}Rn sample by the air luminescence method, E_{α} , is given by the relation

Chemistry Letters 2001 239

 $E_{\alpha} = [A_{air} (cps) / S (Bq)] \times 100\%,$

where A_{air} is the air luminescence count rate of the standard 222 Rn sample and S is the total disintegration rates of the standard 222 Rn sample. It is noted that the total disintegration rates of the 222 Rn sample are 5 times the disintegration rates of 222 Rn. The average counting efficiency for the air luminescence method, the E_{α} , was found to be $42.6 \pm 0.2\%$ (Table 1). It is interesting to note that, although the liquid scintillation spectrometer and the method were different from those in the preceding paper, 3 the E_{α} obtained in the present study is in good agreement the previously reported value $(42.0 \pm 0.2\%)$.

The counting efficiency for the E_{α} measured in this way is the average of the following three counting efficiencies, i.e., the counting efficiency for α -emitters which are uniformly distributed in air in the counting vial and do not attached to the wall of the counting vial (unattached daughters), the counting efficiency for α -emitters which are attached to the wall of the counting vial, and the Cherenkov counting efficiency due to β -particles from ^{214}Pb and ^{214}Bi in the counting vial.

The counting efficiency for α -emitters uniformly distributed in the counting vial was obtained as follows: First we measured the α -emission rate of a $^{210}Pb^{-210}Bi^{-210}Po$ source electroplated on silver disc (13-mm diameter) with 2π proportional counter for 10 min. The α -emission rate was 40.795 ± 0.260 α -particles / s in a solid angle of 2π steradians. Then the source was mounted at different positions in the counting vial (Figure 1), and the air luminescence counts due to α -particles from ^{210}Po were counted with the liquid scintillation spectrometer to a minimum of 20000 counts to obtain a standard statistical error of <ca. 0.7%. The background was observed to be constant within statistical error. The counting efficiency for α -emitters which were uniformly distributed in the counting vial, is given by

(the air luminescence count rate / the α -emission rate) \times 100%.

In spite of the different positions of the source in the counting vial, the results, listed in Table 2, show good agreement with each other. Therefore, the counting efficiency for the unattached α -emitters, which were uniformly distributed in the counting vial, could reasonably be taken as the average value of Table 1, i.e., 67.5 \pm 0.4%.

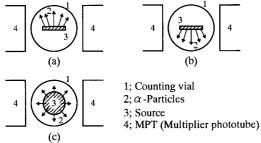


Figure 1. A plain figure for measurements of the ²¹⁰Pb-²¹⁰Bi-²¹⁰Po source in the counting vial. The source was placed; (a) and (b), at right angles to the surfaces of MPTs at the center of the vial; (c) on the bottom of the vial.

On the other hand, a part of the short-lived daughters of ^{222}Rn seem to be attached to the wall of the counting vial and are supposed to be counted with 2π geometry. Therefore, the counting efficiency for the α -emitters which are attached to the wall of the counting vial is ca. $(1/2) \times (67.5 \pm 0.4) = 33.8 \pm 0.2\%$. It is

Table 2. Counting efficiency of the ²¹⁰Pb-²¹⁰Bi-²¹⁰Po source by the air luminescence method

Boarce by the air ranninescence method				
Position	The air luminescence		Counting	
of	count rate ^a		efficiency	
the source	/ cps		/ %	
(a)	27.653 ± 0.283		67.78 ± 0.73	
(b)	27.245 ± 0.283		66.79 ± 0.72	
(c)	27.767 ± 0.283		68.06 ± 0.73	
		av	67.5 ± 0.4	

^aCorrected for the Cherenkov count rate due to β -particles from ²¹⁰Pb and ²¹⁰Bi.

noted that the β -emitters do not produce the air luminescence count, and that 222 Rn, which has a relatively long half-life (3.825 d), is assumed to be unattached to the wall of the counting vial.

Let δ be the average ratio of the number of the daughters which are attached to the wall to the total number of the daughters, and let A be the individual activity of ²²²Rn and the daughters after transient equilibrium between ²²²Rn and the daughters was established; then the count rate due to ²²²Rn, ²¹⁸Po and ²¹⁴Po can be expressed

$$A(67.5 \pm 0.4) + 2A(67.5 \pm 0.4)(1 - \delta) + 2A(33.8 \pm 0.2)\delta.$$
 (1)

As have been reported in a preceding paper, 6 β -particles from 214 Pb (av β^- 0.220 MeV) 5 and 214 Bi (av β^- 0.641 MeV) 5 gave Cherenkov radiation by interacting with the wall of the counting vial: The Cherenkov counting efficiencies for 214 Pb and 214 Bi were found to be 3.7 \pm 0.2% and 32.9 \pm 1.3%, respectively. Thus the Cherenkov count rate due to β -particles from 214 Pb and 214 Bi were estimated to be

$$A[(3.7\pm 0.2) + (32.9\pm 1.3)]. \tag{2}$$

Hence the E_{α} (42.6 \pm 0.2%) is given in terms of equations (1) and (2) as

$$[(1) + (2)] / 5A = 42.6 \pm 0.2\%,$$

where 5A is the total disintegration rate of 222 Rn and its daughters, so that, $\delta = 38.7 \pm 2.8\%$. Errors were calculated as the sum of uncertainties of the standard solutions and standard statistical error.

A detailed investigation concerning three counting efficiencies which constitute the E_{α} would be desirable. However, it should be emphasized that the E_{α} obtained in this study is based on the experimental method, therefore, it can be applied to the preparation of known amounts of 222 Rn, which are needed for calibration of detectors measuring 222 Rn or a number of experiments without elaborate instrumentation or technique.

References

- S. Dondes, P. Harteck, and C. Kunz, *Radiat. Res.*, 27, 174 (1966).
- M. Takiue and H. Ishikawa, Nucl. Instrum. Methods, 159, 139 (1979).
- 3 Y. Homma, Y. Murase, and M. Takiue, J. Radioanal. Nucl. Chem. Lett., 119, 457 (1987).
- 4 Y. Murase, Y, Homma, M. Takiue, and T. Aburai, *Appl. Radiat. Isot.*, **40**, 291 (1989).
- 5 C. M. Lederer and V. S. Sirley, "Table of Isotopes," 7th ed., Wiley, New York (1978).
- Y. Morita-Murase, I. Murakami, and Y. Homma, Chem. Lett., 2000, 1158.